Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Dis Model Mech ; 17(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38501211

RESUMO

Mitogen-activated protein 3 kinase 1 (MAP3K1) has a plethora of cell type-specific functions not yet fully understood. Herein, we describe a role for MAP3K1 in female reproductive tract (FRT) development. MAP3K1 kinase domain-deficient female mice exhibited an imperforate vagina, labor failure and infertility. These defects corresponded with shunted Müllerian ducts (MDs), the embryonic precursors of FRT, that manifested as a contorted caudal vagina and abrogated vaginal-urogenital sinus fusion in neonates. The MAP3K1 kinase domain is required for optimal activation of the Jun-N-terminal kinase (JNK) and cell polarity in the MD epithelium, and for upregulation of WNT signaling in the mesenchyme surrounding the caudal MD. The MAP3K1-deficient epithelial cells and MD epithelium had reduced expression of WNT7B ligands. Correspondingly, conditioned media derived from MAP3K1-competent, but not -deficient, epithelial cells activated a TCF/Lef-luciferase reporter in fibroblasts. These observations indicate that MAP3K1 regulates MD caudal elongation and FRT development, in part through the induction of paracrine factors in the epithelium that trans-activate WNT signaling in the mesenchyme.


Assuntos
Células Epiteliais , MAP Quinase Quinase Quinase 1 , Vagina , Animais , Feminino , Camundongos , Células Epiteliais/metabolismo , Epitélio/metabolismo , Vagina/metabolismo , Via de Sinalização Wnt , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo
2.
Kaohsiung J Med Sci ; 39(9): 896-903, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37314251

RESUMO

The incidence of early-onset colorectal cancer (CRC), which affects people under 50, is increasing for unknown reasons. Additionally, no underlying genetic cause is found in 20%-30% of patients suspected of having familial CRC syndrome. Whole exome sequencing (WES) has generated evidence for new genes associated with CRC susceptibility, but many patients remain undiagnosed. This study applied WES in five early-onset CRC patients from three unrelated families to identify novel genetic variants that could be linked to rapid disease development. Furthermore, the candidate variants were validated using Sanger sequencing. Two heterozygote variations, c.1077-2A>G and c.199G>A, were found in the MSH2 and the MLH1 genes, respectively. Sanger sequencing analysis confirmed that these (likely) pathogenic mutations segregated in all the affected families' members. In addition, we identified a rare heterozygote variant (c.175C>T) with suspected pathogenic potential in the MAP3K1 gene; formally the variant is of uncertain significance (VUS). Our findings support the hypothesis that CRC onset may be oligogenic and molecularly heterogeneous. Larger and more robust studies are needed to understand the genetic basis of early-onset CRC development, combined with novel functional analyses and omics approaches.


Assuntos
Neoplasias Colorretais , MAP Quinase Quinase Quinase 1 , Humanos , Proteína 2 Homóloga a MutS/genética , Sequenciamento do Exoma , Mutação/genética , Neoplasias Colorretais/genética , Predisposição Genética para Doença , Proteína 1 Homóloga a MutL/genética , MAP Quinase Quinase Quinase 1/genética
3.
Cell Oncol (Dordr) ; 46(5): 1213-1234, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37166744

RESUMO

PURPOSE: In this study, we assessed whether the overexpression of MAP3K1 promotes the proliferation, migration, and invasion of breast cancer cells, which affect the prognosis of hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative early stage breast cancer. METHODS: Two HR-positive, HER2-negative breast cancer cell lines (MCF7 and T-47D) overexpressing MAP3K1 were transfected with two MAP3K1 short hairpin RNA plasmids (shMAP3K1 [#3] and shMAP3K1 [#5]). The proliferation, migration, and invasion of these cells were then examined. We assessed whether shMAP3K1 affects the cell cycle, levels of downstream signaling molecules (ERK, JNK, p38 MAPK, and NF-κB), and sensitivity to chemotherapeutic and hormonal agents. To assess the anti-tumor effect of MAP3K1 knockdown in the breast cancer orthotopic model, MCF7 and T-47D cells treated with or without shMAP3K1 (#3) and shMAP3K1 (#5) were inoculated into the mammary fat pads of mice. In total, 182 patients with HR-positive, HER2-negative T1 and T2 breast cancer and 0-3 nodal metastases were included. Additionally, 73 patients with T1 and T2 breast cancer and negative nodes who received adjuvant endocrine therapy alone were selected as an independent validation cohort. RESULTS: In both cell lines, shMAP3K1 (#3) and shMAP3K1 (#5) significantly reduced cell growth, migration, and invasion by downregulating MMP-9 and by blocking the G2/M phase of the cell cycle and its regulatory molecule cyclin B1. Moreover, both shMAP3K1 (#3) and shMAP3K1 (#5) downregulated ERK-, JNK-, p38 MAPK-, and NF-κB-dependent gene transcription and enhanced the sensitivity of both cell lines to doxorubicin, docetaxel, and tamoxifen. We observed that both shMAP3K1 (#3) and shMAP3K1 (#5) inhibited tumor growth compared with that in the scrambled group of MCF7 and T-47D cell orthotopic tumors. Patients with MAP3K1 overexpression exhibited significantly poorer 10-year disease-free survival (DFS) (70.4% vs. 88.6%, p = 0.003) and overall survival (OS) (81.9% vs. 96.3%, p = 0.001) than those without MAP3K1 overexpression. Furthermore, phospho-ERK (p < 0.001) and phospho-JNK (p < 0.001) expressions were significantly associated with MAP3K1 expression, and both phospho-ERK and phospho-JNK expressions were significantly correlated with poor 10-year DFS and OS. These biological findings, including a significant association between DFS and OS, and the expressions of MAP3K1, phospho-ERK, and phospho-JNK were further validated in an independent cohort. Multivariate analysis identified MAP3K1 expression as an independent poor prognostic factor for DFS and OS. CONCLUSION: Our results indicate that the overexpression of MAP3K1 plays a major role in the poor prognosis of HR-positive, HER2-negative early stage breast cancer.


Assuntos
Neoplasias da Mama , MAP Quinase Quinase Quinase 1 , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/patologia , NF-kappa B , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Tamoxifeno , Intervalo Livre de Doença , Proteínas Quinases p38 Ativadas por Mitógeno , MAP Quinase Quinase Quinase 1/genética
4.
Genes (Basel) ; 14(3)2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36980976

RESUMO

Polymorphisms rs2472493 near ABCA1, rs7636836 in FNDC3B, and rs61275591 near the ANKRD55-MAP3K1 genes were previously reported to exhibit genome-wide significance in primary open-angle glaucoma (POAG). Since these polymorphisms have not been investigated in the Arab population of Saudi Arabia, we examined their association with POAG in a Saudi cohort. Genotyping was performed in 152 POAG cases and 246 controls using Taqman real-time assays and their associations with POAG and clinical markers, such as intraocular pressure, cup/disc ratio, and the number of antiglaucoma medications, were tested by statistical methods. There was no association observed between POAG and the minor allele frequencies of rs2472493[G], rs7636836[T], or rs61275591[A]. None of the genetic models such as co-dominant, dominant, recessive, over-dominant, and log-additive demonstrated any genotype link. The Rs2472493 genotype showed a modest association (p = 0.044) with the number of antiglaucoma medications in the POAG group, but no significant genotype effect on post hoc analysis. In addition, a G-T allelic haplotype of rs2472493 (ABCA1) and rs7636836 (FNDC3B) did show an over two-fold increased risk of POAG (odds ratio = 2.18), albeit non-significantly (p = 0.092). Similarly, no other allelic haplotype of the three variants showed any significant association with POAG. Our study did not replicate the genetic association of rs2472493 (ABCA1), rs763683 (FNDC3B), and rs61275591 (ANKRD55-MAP3K1) in POAG and related clinical phenotypes, suggesting that these polymorphisms are not associated with POAG in a Saudi cohort of Arab ethnicity. However, large population-based multicenter studies are needed to validate these results.


Assuntos
Glaucoma de Ângulo Aberto , MAP Quinase Quinase Quinase 1 , Humanos , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/epidemiologia , Agentes Antiglaucoma , Arábia Saudita/epidemiologia , Estudos de Casos e Controles , Polimorfismo Genético , MAP Quinase Quinase Quinase 1/genética , Fibronectinas/genética , Transportador 1 de Cassete de Ligação de ATP/genética , Proteínas de Transporte/genética
5.
BMC Gastroenterol ; 22(1): 513, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510163

RESUMO

BACKGROUND/OBJECTIVES: The hormone-dependent effect of MAP3K1 gene polymorphisms may explain sex-specific differences in gastric cancer (GC) risk. Phytoestrogens have been shown to interact with this genetic factor. Here, we investigated the association between MAP3K1 gene polymorphisms and GC risk by sex and whether these associations differ depending on soy products intake. METHODS: Participants aged 20-79 years were recruited from two hospitals between December 2002 and September 2006. In all, 440 cases and 485 controls were recruited, among, 246 pairs of cases and controls, matched by sex, age (± 5 years), study admission period (± 1 years), and hospital, were included for the analysis. RESULTS: In dominant model, men with the A allele of rs252902 showed significantly increased GC risk (odd ratio; OR=2.19, 95% confidence interval; CI=1.31-3.64) compared to GG homozygotes. When stratified by intake of soy products, men with the A allele of rs252902 and low intake of soy products showed significantly higher GC risk (OR=3.29, 95% CI=1.55-6.78) than that in GG homozygotes. CONCLUSIONS: Men with the risk allele of MAP3K1 had a significantly increased GC risk compared to GG homozygotes; this trend was more pronounced in those with low intake of soy products.


Assuntos
MAP Quinase Quinase Quinase 1 , Neoplasias Gástricas , Masculino , Feminino , Humanos , Neoplasias Gástricas/genética , Estudos de Casos e Controles , Polimorfismo de Nucleotídeo Único , Alelos , Razão de Chances , Fatores de Risco , Predisposição Genética para Doença , MAP Quinase Quinase Quinase 1/genética
6.
Mol Med Rep ; 26(5)2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36102299

RESUMO

The 46, XY disorder of sex development (DSD) is the main cause of birth defects; however, as it is a group of highly heterogeneous diseases, >50% of cases are not accurately diagnosed. Identification of more cases will improve understanding of the relationship between genotype and phenotype for DSD. The present study conducted a systematic analysis of the clinical characteristics of a proband with 46, XY DSD, applied genetic analysis by whole­exome sequencing to this pedigree and performed bioinformatics analysis of the identified variant. The proband presented with a short penis, lack of testicles and partial growth hormone (GH) deficiency at 1 year old. Histopathological examination revealed there were oviduct, epididymis and fibrous vascular tissue on both sides of the abdomen. The last follow­up at 5 years of age revealed that the patient exhibited restricted growth, a 1.5­cm penis and lack of testicles. Notably, a novel pathogenic mitogen­activated protein kinase kinase kinase 1 (MAP3K1) variant (c.3020A>G) was identified in the proband, resulting in a change in the 1,007th amino acid (glutamine) of the encoded protein. This variant caused the uncharged neutral glutamine to be replaced by a positively charged basic arginine. p.Gln1007 in MAP3K1 was confirmed to be conserved across various species. Pathogenicity analysis using bioinformatics tools suggested that this MAP3K1 variant may cause functional defects. In conclusion, the present study identified a novel MAP3K1 variant that was the cause of 46, XY DSD and partial GH deficiency. The present findings extend the mutation spectrum of MAP3K1 and provide novel characteristics of 46, XY DSD.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual , MAP Quinase Quinase Quinase 1 , Transtorno 46,XY do Desenvolvimento Sexual/diagnóstico , Transtorno 46,XY do Desenvolvimento Sexual/genética , Glutamina/genética , Hormônio do Crescimento/genética , Humanos , MAP Quinase Quinase Quinase 1/genética , Masculino , Fenótipo
7.
Taiwan J Obstet Gynecol ; 61(5): 903-905, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36088066

RESUMO

OBJECTIVE: Swyer syndrome, or 46, XY complete gonadal dysgenesis, is a disorder of human sexual development which present with female external genitalia, lack of female reproductive organs, and a 46, XY karyotype. Many genes that participate in human sexual development have been implicated in the pathogenesis of 46, XY gonadal dysgenesis. CASE REPORT: A 18-year-old phenotypically female was presented with primary amenorrhea. Surveillance revealed hypergonadotropic hypogonadism, a normal male 46, XY karyotype and absent of functional gonad, which was confirmed by pathological examination of the streak gonad. Whole exome sequencing showed germline mutations of a novel missense variant, c.570G > C, p.Lys190Asn, in exon 2 of MAP3K1 gene. CONCLUSION: Given evolutionary conservation of lysine residue at position 190, the amino acid substitution may interfere with interaction between MAP3K1 and RHOA, and contributes to complete gonadal dysgenesis in the context of 46,XY.


Assuntos
Disgenesia Gonadal 46 XY , Disgenesia Gonadal , MAP Quinase Quinase Quinase 1 , Síndrome de Turner , Adolescente , Feminino , Disgenesia Gonadal 46 XY/genética , Humanos , Cariotipagem , MAP Quinase Quinase Quinase 1/genética , Masculino , Mutação de Sentido Incorreto
8.
Sci Rep ; 12(1): 11482, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798792

RESUMO

Epithelial development starts with stem cell commitment to ectoderm followed by differentiation to the basal keratinocytes. The basal keratinocytes, first committed in embryogenesis, constitute the basal layer of the epidermis. They have robust proliferation and differentiation potential and are responsible for epidermal expansion, maintenance and regeneration. We generated basal epithelial cells in vitro through differentiation of mouse embryonic stem cells (mESCs). Early on in differentiation, the expression of stem cell markers, Oct4 and Nanog, decreased sharply along with increased ectoderm marker keratin (Krt) 18. Later on, Krt 18 expression was subdued when cells displayed basal keratinocyte characteristics, including regular polygonal shape, adherent and tight junctions and Krt 14 expression. These cells additionally expressed abundant Sca-1, Krt15 and p63, suggesting epidermal progenitor characteristics. Using Map3k1 mutant mESCs and environmental dioxin, we examined the gene and environment effects on differentiation. Neither Map3k1 mutation nor dioxin altered mESC differentiation to ectoderm and basal keratinocytes, but they, individually and in combination, potentiated Krt 1 expression and basal to spinous differentiation. Similar gene-environment effects were observed in vivo where dioxin exposure increased Krt 1 more substantially in the epithelium of Map3k1+/- than wild type embryos. Thus, the in vitro model of epithelial differentiation can be used to investigate the effects of genetic and environmental factors on epidermal development.


Assuntos
Dioxinas , Queratinócitos , MAP Quinase Quinase Quinase 1 , Células-Tronco Embrionárias Murinas , Animais , Diferenciação Celular , Dioxinas/farmacologia , Células Epidérmicas , Epiderme/metabolismo , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , MAP Quinase Quinase Quinase 1/genética , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Mutação
9.
J Clin Lab Anal ; 36(6): e24470, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35524422

RESUMO

BACKGROUND: Papillary thyroid carcinoma (PTC) grows slowly but has a great risk of metastasis. MicroRNAs are well known as vital tumor-related gene regulators. In PTC, the role of miR-203a-3p and the underlying mechanisms remain not completely understood. METHODS: We conducted CCK8 assay, wound healing assay, transwell experiment and flow cytometry analyses to investigate the function of miRNA-203a-3p. The interaction of miRNA-203a-3p with its gene MAP3K1 was characterized by quantitative real-time polymerase chain reaction, western blotting and luciferase assay. RESULTS: We found that the levels of miRNA-203a-3p were statistically decreased in PTC tissues. When mimics were delivered to TPC-1 and KTC-1 cells to upregulate miR-203a-3p, it was observed that cell proliferation, metastatic abilities and cell cycle process were prevented but cell apoptosis was enhanced. Furthermore, we proved the interaction between MAP3K1 and miR-203a-3p. Intriguingly, similar to miR-203a-3p mimics, siMAP3K1 showed a tumor-suppressive effect, and this effect could be reversed when miR-203a-3p was simultaneously inhibited. Finally, selected autophagy-linked proteins such as LC3 Beclin-1 were detected and found to be increased when miR-203a-3p was upregulated or MAP3K1 was inhibited. CONCLUSION: Overall, miR-203a-3p inhibits the oncogenic characteristics of TPC-1 and KTC-1 cells via suppressing MAP3K1 and activating autophagy. Our findings might enrich the understanding and the therapeutic strategies of PTC.


Assuntos
Carcinoma Papilar , MAP Quinase Quinase Quinase 1 , MicroRNAs , Neoplasias da Glândula Tireoide , Autofagia/genética , Carcinoma Papilar/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
10.
Sex Dev ; 16(2-3): 92-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35290982

RESUMO

Pathogenic variants in the MAP3K1 gene are an important cause of 46,XY non-syndromic partial and complete gonadal dysgenesis, accounting for at least 4% of cases. Inheritance occurs in a sex-limited, autosomal dominant fashion with virtually complete penetrance in 46,XY individuals. 46,XX carriers appear to have normal fertility and no developmental abnormalities. Pathogenic variants occur almost exclusively within known domains of the MAP3K1 protein, facilitating annotation when identified. Where studied, these variants have been modeled to alter the local MAP3K1 folding and surface domains and have been shown to alter interactions with known binding partners. The net effect of these variants is to increase phosphorylation of downstream targets ERK1, ERK2, and p38, resulting in multiple gain-of-function effects interfering with testis determination and enabling ovarian determination.


Assuntos
Disgenesia Gonadal 46 XY , Disgenesia Gonadal , MAP Quinase Quinase Quinase 1 , Masculino , Humanos , MAP Quinase Quinase Quinase 1/genética , Disgenesia Gonadal 46 XY/genética , Disgenesia Gonadal 46 XY/patologia , Disgenesia Gonadal/genética , Heterozigoto , Testículo/patologia
11.
Cell Cycle ; 21(11): 1194-1211, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35230926

RESUMO

Colon cancer (CC) is a common malignant tumor of the digestive tract. Circular RNAs (circRNAs) play important roles in the progression of CC. This study aimed to explore the role and mechanism of circRNA_0085315 in CC. In this study, we used qRT-PCR and Western blot assays to analyze the expressions of circRNA, miRNA, and mRNA as well as the expression of the related proteins. Luciferase reporter, RNA pull-down, and qRT-PCR assays were used to prove the relationship among circRNA, miRNA, and mRNA. CCK-8, colony formation, and transwell assays were used to perform the analysis of cell proliferation, migration, and invasion. Our results showed that the higher circRNA_0085315 expression led to the poorer prognosis of CC patients. The function of circRNA_0085315 as a ceRNA in competing with MAP3K1 mRNA to sponge miR-1200. CircRNA_0085315 sponged miR-1200 to promote cell proliferation, migration, and invasion and affected the expression of Ki67, MMP2, E-cadherin, and N-cadherin, but not circRNA_0085315-mut without the binding site of miR-1200. MAP3K1-overexpression or miR-1200 mimics prevented the suppression on the enhanced cell proliferation, migration, and invasion caused by circRNA_0085315-overexpression. circRNA_0085315 increased the phosphorylation levels of JNK, p38, and ERK1/2 by stimulating MAP3K1 up-regulation caused by miR-1200 inhibition. In conclusion, circRNA_0085315 serves as a ceRNA and promotes CC progression through the activation of the MAPK signaling pathway mediated via the miR-1200/MAP3K1 axis, suggesting that circRNA_0085315 may be a promising diagnostic and therapeutic target for CC.


Assuntos
Neoplasias do Colo , MAP Quinase Quinase Quinase 1 , MicroRNAs , RNA Circular , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo , Sistema de Sinalização das MAP Quinases , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
12.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911761

RESUMO

Arterial remodeling is an important adaptive mechanism that maintains normal fluid shear stress in a variety of physiologic and pathologic conditions. Inward remodeling, a process that leads to reduction in arterial diameter, plays a critical role in progression of such common diseases as hypertension and atherosclerosis. Yet, despite its pathogenic importance, molecular mechanisms controlling inward remodeling remain undefined. Mitogen-activated protein kinases (MAPKs) perform a number of functions ranging from control of proliferation to migration and cell-fate transitions. While the MAPK ERK1/2 signaling pathway has been extensively examined in the endothelium, less is known about the role of the MEKK3/ERK5 pathway in vascular remodeling. To better define the role played by this signaling cascade, we studied the effect of endothelial-specific deletion of its key upstream MAP3K, MEKK3, in adult mice. The gene's deletion resulted in a gradual inward remodeling of both pulmonary and systematic arteries, leading to spontaneous hypertension in both vascular circuits and accelerated progression of atherosclerosis in hyperlipidemic mice. Molecular analysis revealed activation of TGFß-signaling both in vitro and in vivo. Endothelial-specific TGFßR1 knockout prevented inward arterial remodeling in MEKK3 endothelial knockout mice. These data point to the unexpected participation of endothelial MEKK3 in regulation of TGFßR1-Smad2/3 signaling and inward arterial remodeling in artery diseases.


Assuntos
Hipertensão Pulmonar/patologia , MAP Quinase Quinase Quinase 1/metabolismo , MAP Quinase Quinase Quinase 3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Remodelação Vascular/fisiologia , Animais , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Membro Posterior/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipertensão Pulmonar/metabolismo , Isquemia , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 3/genética , Camundongos , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Moduladores Seletivos de Receptor Estrogênico/toxicidade , Transdução de Sinais , Tamoxifeno/toxicidade , Fator de Crescimento Transformador beta/genética
13.
PLoS Negl Trop Dis ; 15(12): e0010027, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34879059

RESUMO

BACKGROUND: The metacestode larval stage of the fox-tapeworm Echinococcus multilocularis causes alveolar echinococcosis by tumour-like growth within the liver of the intermediate host. Metacestode growth and development is stimulated by host-derived cytokines such as insulin, fibroblast growth factor, and epidermal growth factor via activation of cognate receptor tyrosine kinases expressed by the parasite. Little is known, however, concerning signal transmission to the parasite nucleus and cross-reaction with other parasite signalling systems. METHODOLOGY/PRINCIPAL FINDINGS: Using bioinformatic approaches, cloning, and yeast two-hybrid analyses we identified a novel mitogen-activated kinase (MAPK) cascade module that consists of E. multilocularis orthologs of the tyrosine kinase receptor interactor Growth factor receptor-bound 2, EmGrb2, the MAPK kinase kinase EmMEKK1, a novel MAPK kinase, EmMKK3, and a close homolog to c-Jun N-terminal kinase (JNK), EmMPK3. Whole mount in situ hybridization analyses indicated that EmMEKK1 and EmMPK3 are both expressed in E. multilocularis germinative (stem) cells but also in differentiated or differentiating cells. Treatment with the known JNK inhibitor SP600125 led to a significantly reduced formation of metacestode vesicles from stem cells and to a specific reduction of proliferating stem cells in mature metacestode vesicles. CONCLUSIONS/SIGNIFICANCE: We provide evidence for the expression of a MEKK1-JNK MAPK cascade module which, in mammals, is crucially involved in stress responses, cytoskeletal rearrangements, and apoptosis, in E. multilocularis stem cells. Inhibitor studies indicate an important role of JNK signalling in E. multilocularis stem cell survival and/or maintenance. Our data are relevant for molecular and cellular studies into crosstalk signalling mechanisms that govern Echinococcus stem cell function and introduce the JNK signalling cascade as a possible target of chemotherapeutics against echinococcosis.


Assuntos
Echinococcus multilocularis/enzimologia , Proteínas de Helminto/metabolismo , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinase 1/metabolismo , Células-Tronco/enzimologia , Animais , Proliferação de Células , Echinococcus multilocularis/genética , Echinococcus multilocularis/crescimento & desenvolvimento , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Proteínas de Helminto/genética , MAP Quinase Quinase 4/genética , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 3/genética , MAP Quinase Quinase Quinase 3/metabolismo , Sistema de Sinalização das MAP Quinases , Células-Tronco/citologia
14.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34576208

RESUMO

Sex determination triggers the differentiation of the bi-potential gonad into either an ovary or testis. In non-mammalian vertebrates, the presence or absence of oestrogen dictates gonad differentiation, while in mammals, this mechanism has been supplanted by the testis-determining gene SRY. Exogenous oestrogen can override this genetic trigger to shift somatic cell fate in the gonad towards ovarian developmental pathways by limiting the bioavailability of the key testis factor SOX9 within somatic cells. Our previous work has implicated the MAPK pathway in mediating the rapid cellular response to oestrogen. We performed proteomic and phosphoproteomic analyses to investigate the precise mechanism through which oestrogen impacts these pathways to activate ß-catenin-a factor essential for ovarian development. We show that oestrogen can activate ß-catenin within 30 min, concomitant with the cytoplasmic retention of SOX9. This occurs through changes to the MAP3K1 cascade, suggesting this pathway is a mechanism through which oestrogen influences gonad somatic cell fate. We demonstrate that oestrogen can promote the shift from SOX9 pro-testis activity to ß-catenin pro-ovary activity through activation of MAP3K1. Our findings define a previously unknown mechanism through which oestrogen can promote a switch in gonad somatic cell fate and provided novel insights into the impacts of exogenous oestrogen exposure on the testis.


Assuntos
MAP Quinase Quinase Quinase 1/metabolismo , beta Catenina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Estrogênios/farmacologia , Humanos , MAP Quinase Quinase Quinase 1/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
15.
Biochem Pharmacol ; 193: 114748, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34461116

RESUMO

Cav1.2 L-type voltage-gated Ca2+ channels play a central role in pancreatic ß-cells by integrating extracellular signals with intracellular signaling events leading to insulin secretion and altered gene transcription. Here, we investigated the intracellular signaling pathway following stimulation of Cav1.2 Ca2+ channels and addressed the function of the transcription factor activator protein-1 (AP-1) in pancreatic ß-cells of transgenic mice. Stimulation of Cav1.2 Ca2+ channels activates AP-1 in insulinoma cells. Pharmacological and genetic experiments identified c-Jun N-terminal protein kinase as a signal transducer connecting Cav1.2 Ca2+ channel activation with gene transcription. Moreover, the basic region-leucine zipper proteins ATF2 and c-Jun or c-Jun-related proteins were involved in stimulus-transcription coupling. We addressed the functions of AP-1 in pancreatic ß-cells analyzing a newly generated transgenic mouse model. These transgenic mice expressed A-Fos, a mutant of c-Fos that attenuates DNA binding of c-Fos dimerization partners. In insulinoma cells, A-Fos completely blocked AP-1 activation following stimulation of Cav1.2 Ca2+ channels. The analysis of transgenic A-Fos-expressing mice revealed that the animals displayed impaired glucose tolerance. Thus, we show here for the first time that AP-1 controls an important function of pancreatic ß-cells in vivo, the regulation of glucose homeostasis.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator 2 Ativador da Transcrição/genética , Fator 2 Ativador da Transcrição/metabolismo , Animais , Benzamidas/química , Benzamidas/farmacologia , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica/fisiologia , Intolerância à Glucose , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo , Camundongos , Camundongos Transgênicos , Piridinas/química , Piridinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Interferência de RNA , Ratos , Fator de Transcrição AP-1/genética
16.
Mol Cell Biol ; 41(10): e0008121, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34251884

RESUMO

Cullin-4 ubiquitin ligase (CRL4) complexes are differentially composed and highly dynamic protein assemblies that control many biological processes, including the global genome nucleotide excision repair (GG-NER) pathway. Here, we identified the kinase mitogen-activated protein kinase kinase kinase 1 (MEKK1) as a novel constitutive interactor of a cytosolic CRL4 complex that disassembles after DNA damage due to the caspase-mediated cleavage of MEKK1. The kinase activity of MEKK1 was important to trigger autoubiquitination of the CRL4 complex by K48- and K63-linked ubiquitin chains. MEKK1 knockdown prohibited DNA damage-induced degradation of the CRL4 component DNA-damage binding protein 2 (DDB2) and the CRL4 substrate p21 and also cell recovery and survival. A ubiquitin replacement strategy revealed a contribution of K63-branched ubiquitin chains for DNA damage-induced DDB2/p21 decay, cell cycle regulation, and cell survival. These data might also have implications for cancer, as frequently occurring mutations of MEKK1 might have an impact on genome stability and the therapeutic efficacy of CRL4-dependent immunomodulatory drugs such as thalidomide derivatives.


Assuntos
Reparo do DNA/fisiologia , MAP Quinase Quinase Quinase 1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , DNA/química , Dano ao DNA/fisiologia , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Humanos , MAP Quinase Quinase Quinase 1/genética , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
17.
Cancer Med ; 10(18): 6227-6238, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331411

RESUMO

BACKGROUND: Sarcomatoid hepatocellular carcinoma (HCC) is a rare and highly lethal histological subtype of HCC, with completely unknown genetic etiology and therapeutic targets. METHODS: We included 16 patients with sarcomatoid HCC receiving radical resection among 6731 cases of pathological confirmed HCC in year 2008 to 2018 in our hospital. We compared the clinical features, prognosis and cancer genome between 15 sarcomatoid HCC and propensity score-matched 75 non-sarcomatoid HCC patients. The other concurrent case was analyzed using phylogenetic tree to assess the tumor heterogeneity and evolution. RESULTS: Sarcomatoid HCC group showed larger tumor size, more advanced differentiation grade, lower tumor free survival (p = 0.038) and overall survival (p = 0.001), and sarcomatoid type was an independent risk factor for patient death. Integrating sarcomatoid subtype into AJCC staging could increase the diagnostic curve in predicting patient survival. The cancer genome spectrum showed sarcomatoid HCC group had significant higher mutation rates in CDKN2A, EPHA5, FANCM and MAP3K1. Mutations in CDKN2A significantly reduced tumor-free and overall survival in sarcomatoid HCC patients. Moreover, 46.6% sarcomatoid HCC patients had druggable mutations in cell cycle pathway genes, which were targeted by Abemaciclib, et al. We also found sarcomatoid and non-sarcomatoid lesions might originate from a common progenitor but progress differently. CONCLUSION: Our cancer genome analysis showed a specific genomic profile of sarcomatoid HCC, which were characterized by a high mutation rate in cell cycle genes particularly CDKN2A. The results indicate CDK4/6 inhibitors including abemaciclib, ribociclib and palbociclib as potential therapeutic targets and may help for therapeutic decision making.


Assuntos
Carcinoma Hepatocelular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Neoplasias Hepáticas/genética , Fígado/patologia , Recidiva Local de Neoplasia/epidemiologia , Idoso , Aminopiridinas/uso terapêutico , Benzimidazóis/uso terapêutico , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/terapia , Quimioterapia Adjuvante , DNA Helicases/genética , Intervalo Livre de Doença , Feminino , Seguimentos , Hepatectomia , Humanos , Fígado/cirurgia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/terapia , MAP Quinase Quinase Quinase 1/genética , Masculino , Pessoa de Meia-Idade , Taxa de Mutação , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/prevenção & controle , Prognóstico , Receptor EphA5/genética , Fatores de Risco , Carga Tumoral
18.
Exp Anim ; 70(4): 459-468, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34078823

RESUMO

In this study, we describe an N-ethyl-N-nitrosourea-induced mouse model with a corneal opacity phenotype that was associated with "eye open at birth" (EOB). Histological and immunohistochemistry staining analysis showed abnormal differentiation of the corneal epithelial cells in the mutant mice. The EOB phenotype was dominantly inherited on a C57BL/6 (B6) background. This allele carries a T941A substitution in exon 4 that leads to an L314Q amino acid change in the open reading frame of MAP3K1 (MEEK1). We named this novel Map3k1 allele Map3k1L314Q. Phalloidin staining of F-actin was reduced in the mutant epithelial leading edge cells, which is indicative of abnormality in epithelial cell migration. Interestingly enough, not only p-c-Jun and p-JNK but also c-Jun levels were decreased in the mutant epithelial leading edge cells. This study identifies a novel mouse Map3k1 allele causing EOB phenotype and the EOB phenotype in Map3k1L314Q mouse may be associated with the reduced level of p-JNK and c-Jun.


Assuntos
Movimento Celular , Etilnitrosoureia/efeitos adversos , Pálpebras/crescimento & desenvolvimento , MAP Quinase Quinase Quinase 1/genética , Mutação , Animais , Células Epiteliais/fisiologia , MAP Quinase Quinase Quinase 1/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Orphanet J Rare Dis ; 16(1): 268, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112222

RESUMO

BACKGROUND: Dozens of genes are involved in 46, XY differences in sex development (DSD). Notably, about 3/4 of patients cannot make a clear etiology diagnosis and single gene variant identified cannot fully explain the clinical heterogeneity of 46, XY DSD. MATERIALS AND METHODS: We conducted a systematic clinical analysis of a 46, XY DSD patient, and applied whole-exome sequencing for the genetic analysis of this pedigree. The identified variants were analyzed by bioinformatic analysis and in vitro studies were performed in human embryonic kidney 293T (HEK-293T) cells which were transiently transfected with wild type or variant NR5A1 and MAP3K1 plasmid. Furthermore, protein production of SRY-box transcription factor 9 (SOX9) was analyzed in cell lysates. RESULTS: A novel NR5A1 variant (c.929A > C, p. His310Pro) and a rare MAP3K1 variant (c.2282T > C, p. Ile761Thr) were identified in the proband, whereas the proband's mother and sister who only carry rare MAP3K1 variant have remained phenotypically healthy to the present. These two variants were predicted to be pathogenic by bioinformatic analysis. In vitro, NR5A1 variant decreased the SOX9 production by 82.11% compared to wild type NR5A1, while MAP3K1 variant had little effect on the SOX9 production compared to wild type MAP3K1. Compared to wild type NR5A1 transfection, the SOX9 production of cells transfected with both wild type plasmids decreased by about 17.40%. Compared to variant NR5A1 transfection, the SOX9 production of cells transfected with both variant plasmids increased by the 36.64%. CONCLUSIONS: Our findings suggested the novel compound variants of NR5A1 and MAP3K1 can alter the expression of SOX9 and ultimately lead to abnormality of sex development.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual , MAP Quinase Quinase Quinase 1/genética , Fator Esteroidogênico 1/genética , Humanos , Mutação , Linhagem , Desenvolvimento Sexual , Sequenciamento do Exoma
20.
Aging (Albany NY) ; 13(8): 11470-11490, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33864447

RESUMO

BACKGROUNDS: A major side effect of statin, a widely used drug to treat hyperlipidemia, is skeletal myopathy through cell apoptosis. The aim of this study is to investigate the roles of microRNA in statin-induced injury. METHODS: Apolipoprotein E knockout (ApoE-/-) mice were administered with simvastatin (20 mg/kg/day) for 8 weeks. Exercise capacity was evaluated by hanging grid test, forelimb grip strength, and running tolerance test. RESULTS: In cultured skeletal muscle cells, statin increased the levels of miR-1a but decreased the levels of mitogen-activated protein kinase kinase kinase 1 (MAP3K1) in a time or dose dependent manner. Both computational target-scan analysis and luciferase gene reporter assay indicated that MAP3K1 is the target gene of miR-1a. Statin induced cell apoptosis of skeletal muscle cells, but abolished by downregulating of miR-1a or upregulation of MAP3K1. Further, the effects of miR-1a inhibition on statin-induced cell apoptosis were ablated by MAP3K1 siRNA. In ApoE-/- mice, statin induced cell apoptosis of skeletal muscle cells and decreased exercise capacity in mice infected with vector, but not in mice with lentivirus-mediated miR-1a gene silence. CONCLUSION: Statin causes skeletal injury through induction of miR-1a excessive expression to decrease MAP3K1 gene expression.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , MAP Quinase Quinase Quinase 1/genética , MicroRNAs/metabolismo , Fibras Musculares Esqueléticas/patologia , Doenças Musculares/induzido quimicamente , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Células Cultivadas , Modelos Animais de Doenças , Humanos , Hiperlipidemias/tratamento farmacológico , Camundongos , Camundongos Knockout para ApoE , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , Fibras Musculares Esqueléticas/efeitos dos fármacos , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Musculares/patologia , Condicionamento Físico Animal , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Sinvastatina/efeitos adversos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...